In mathematics, Dieudonné's theorem, named after Jean Dieudonné, is a theorem on when the Minkowski sum of closed sets is closed.
Statement
Let
be a locally convex space and
nonempty closed convex sets. If either
or
is locally compact and
(where
gives the recession cone) is a linear subspace, then
is closed.[1][2]
References
- ^ J. Dieudonné (1966). "Sur la séparation des ensembles convexes". Math. Ann.. 163: 1–3. doi:10.1007/BF02052480. S2CID 119742919.
- ^ Zălinescu, Constantin (2002). Convex analysis in general vector spaces. River Edge, NJ: World Scientific Publishing Co., Inc. pp. 6–7. ISBN 981-238-067-1. MR 1921556.
|
|---|
| Spaces | |
|---|
| Theorems | |
|---|
| Operators | |
|---|
| Algebras | |
|---|
| Open problems | |
|---|
| Applications | |
|---|
| Advanced topics | |
|---|
Category
|