The  Gent   hyperelastic material  model [ 1] rubber elasticity  that is based on the concept of limiting chain extensibility.  In this model, the strain energy density function  is designed such that it has a singularity  when the first invariant of the left Cauchy-Green deformation tensor reaches a limiting value 
  
    
      
        
          I 
          
            m 
           
         
       
     
    {\displaystyle I_{m}} 
   
 
The strain energy density function for the Gent model is [ 1] 
  
    
      
        W 
        = 
        − 
        
          
            
              
                 
              
                
                  μ 
                  
                    J 
                    
                      m 
                     
                   
                 
               
             
            
              
                 
              
                
                  2 
                 
               
             
           
         
        ln 
         
        
          ( 
          
            1 
            − 
            
              
                
                  
                     
                  
                    
                      
                        I 
                        
                          1 
                         
                       
                      − 
                      3 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        J 
                        
                          m 
                         
                       
                     
                   
                 
               
             
           
          ) 
         
       
     
    {\displaystyle W=-{\cfrac {\mu J_{m}}{2}}\ln \left(1-{\cfrac {I_{1}-3}{J_{m}}}\right)} 
   
 where 
  
    
      
        μ 
       
     
    {\displaystyle \mu } 
   
 shear modulus  and 
  
    
      
        
          J 
          
            m 
           
         
        = 
        
          I 
          
            m 
           
         
        − 
        3 
       
     
    {\displaystyle J_{m}=I_{m}-3} 
   
 
In the limit where 
  
    
      
        
          J 
          
            m 
           
         
        → 
        ∞ 
       
     
    {\displaystyle J_{m}\rightarrow \infty } 
   
 Neo-Hookean solid  model.  This can be seen by expressing the Gent model in the form
  
    
      
        W 
        = 
        − 
        
          
            
              
                 
              
                
                  μ 
                 
               
             
            
              
                 
              
                
                  2 
                  x 
                 
               
             
           
         
        ln 
         
        
          [ 
          
            1 
            − 
            ( 
            
              I 
              
                1 
               
             
            − 
            3 
            ) 
            x 
           
          ] 
         
          
        ; 
          
          
        x 
        := 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  
                    J 
                    
                      m 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle W=-{\cfrac {\mu }{2x}}\ln \left[1-(I_{1}-3)x\right]~;~~x:={\cfrac {1}{J_{m}}}} 
   
 A Taylor series expansion  of 
  
    
      
        ln 
         
        
          [ 
          
            1 
            − 
            ( 
            
              I 
              
                1 
               
             
            − 
            3 
            ) 
            x 
           
          ] 
         
       
     
    {\displaystyle \ln \left[1-(I_{1}-3)x\right]} 
   
 
  
    
      
        x 
        = 
        0 
       
     
    {\displaystyle x=0} 
   
 
  
    
      
        x 
        → 
        0 
       
     
    {\displaystyle x\rightarrow 0} 
   
 
  
    
      
        W 
        = 
        
          
            
              
                 
              
                
                  μ 
                 
               
             
            
              
                 
              
                
                  2 
                 
               
             
           
         
        ( 
        
          I 
          
            1 
           
         
        − 
        3 
        ) 
       
     
    {\displaystyle W={\cfrac {\mu }{2}}(I_{1}-3)} 
   
 which is the expression for the strain energy density of a Neo-Hookean solid.
Several compressible  versions of the Gent model have been designed.  One such model has the form[ 2] [ 3] 
  
    
      
        W 
        = 
        − 
        
          
            
              
                 
              
                
                  μ 
                  
                    J 
                    
                      m 
                     
                   
                 
               
             
            
              
                 
              
                
                  2 
                 
               
             
           
         
        ln 
         
        
          ( 
          
            1 
            − 
            
              
                
                  
                     
                  
                    
                      
                        I 
                        
                          1 
                         
                       
                      − 
                      3 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        J 
                        
                          m 
                         
                       
                     
                   
                 
               
             
           
          ) 
         
        + 
        
          
            
              
                 
              
                
                  κ 
                 
               
             
            
              
                 
              
                
                  2 
                 
               
             
           
         
        
          
            ( 
            
              
                
                  
                    
                       
                    
                      
                        
                          J 
                          
                            2 
                           
                         
                        − 
                        1 
                       
                     
                   
                  
                    
                       
                    
                      
                        2 
                       
                     
                   
                 
               
              − 
              ln 
               
              J 
             
            ) 
           
          
            4 
           
         
       
     
    {\displaystyle W=-{\cfrac {\mu J_{m}}{2}}\ln \left(1-{\cfrac {I_{1}-3}{J_{m}}}\right)+{\cfrac {\kappa }{2}}\left({\cfrac {J^{2}-1}{2}}-\ln J\right)^{4}} 
   
 where 
  
    
      
        J 
        = 
        det 
        ( 
        
          F 
         
        ) 
       
     
    {\displaystyle J=\det({\boldsymbol {F}})} 
   
 
  
    
      
        κ 
       
     
    {\displaystyle \kappa } 
   
 bulk modulus , and 
  
    
      
        
          F 
         
       
     
    {\displaystyle {\boldsymbol {F}}} 
   
 deformation gradient .
Consistency condition 
We may alternatively express the Gent model in the form
  
    
      
        W 
        = 
        
          C 
          
            0 
           
         
        ln 
         
        
          ( 
          
            1 
            − 
            
              
                
                  
                     
                  
                    
                      
                        I 
                        
                          1 
                         
                       
                      − 
                      3 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        J 
                        
                          m 
                         
                       
                     
                   
                 
               
             
           
          ) 
         
       
     
    {\displaystyle W=C_{0}\ln \left(1-{\cfrac {I_{1}-3}{J_{m}}}\right)} 
   
 For the model to be consistent with linear elasticity , the following condition  has to be satisfied:
  
    
      
        2 
        
          
            
              
                 
              
                
                  ∂ 
                  W 
                 
               
             
            
              
                 
              
                
                  ∂ 
                  
                    I 
                    
                      1 
                     
                   
                 
               
             
           
         
        ( 
        3 
        ) 
        = 
        μ 
       
     
    {\displaystyle 2{\cfrac {\partial W}{\partial I_{1}}}(3)=\mu } 
   
 where 
  
    
      
        μ 
       
     
    {\displaystyle \mu } 
   
 shear modulus  of the material.
Now, at 
  
    
      
        
          I 
          
            1 
           
         
        = 
        3 
        ( 
        
          λ 
          
            i 
           
         
        = 
        
          λ 
          
            j 
           
         
        = 
        1 
        ) 
       
     
    {\displaystyle I_{1}=3(\lambda _{i}=\lambda _{j}=1)} 
   
 
  
    
      
        
          
            
              
                 
              
                
                  ∂ 
                  W 
                 
               
             
            
              
                 
              
                
                  ∂ 
                  
                    I 
                    
                      1 
                     
                   
                 
               
             
           
         
        = 
        − 
        
          
            
              
                 
              
                
                  
                    C 
                    
                      0 
                     
                   
                 
               
             
            
              
                 
              
                
                  
                    J 
                    
                      m 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\cfrac {\partial W}{\partial I_{1}}}=-{\cfrac {C_{0}}{J_{m}}}} 
   
 Therefore, the consistency condition for the Gent model is
  
    
      
        − 
        
          
            
              
                 
              
                
                  2 
                  
                    C 
                    
                      0 
                     
                   
                 
               
             
            
              
                 
              
                
                  
                    J 
                    
                      m 
                     
                   
                 
               
             
           
         
        = 
        μ 
        ⟹ 
        
          C 
          
            0 
           
         
        = 
        − 
        
          
            
              
                 
              
                
                  μ 
                  
                    J 
                    
                      m 
                     
                   
                 
               
             
            
              
                 
              
                
                  2 
                 
               
             
           
         
       
     
    {\displaystyle -{\cfrac {2C_{0}}{J_{m}}}=\mu \,\qquad \implies \qquad C_{0}=-{\cfrac {\mu J_{m}}{2}}} 
   
 The Gent model assumes that 
  
    
      
        
          J 
          
            m 
           
         
        ≫ 
        1 
       
     
    {\displaystyle J_{m}\gg 1} 
   
 
The Cauchy stress for the incompressible Gent model is given by
  
    
      
        
          σ 
         
        = 
        − 
        p 
          
        
          
            I 
           
         
        + 
        2 
          
        
          
            
              
                 
              
                
                  ∂ 
                  W 
                 
               
             
            
              
                 
              
                
                  ∂ 
                  
                    I 
                    
                      1 
                     
                   
                 
               
             
           
         
          
        
          B 
         
        = 
        − 
        p 
          
        
          
            I 
           
         
        + 
        
          
            
              
                 
              
                
                  μ 
                  
                    J 
                    
                      m 
                     
                   
                 
               
             
            
              
                 
              
                
                  
                    J 
                    
                      m 
                     
                   
                  − 
                  
                    I 
                    
                      1 
                     
                   
                  + 
                  3 
                 
               
             
           
         
          
        
          B 
         
       
     
    {\displaystyle {\boldsymbol {\sigma }}=-p~{\boldsymbol {\mathit {I}}}+2~{\cfrac {\partial W}{\partial I_{1}}}~{\boldsymbol {B}}=-p~{\boldsymbol {\mathit {I}}}+{\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}~{\boldsymbol {B}}} 
   
 
Uniaxial extension 
Stress-strain curves under uniaxial extension for Gent model compared with various hyperelastic material models. For uniaxial extension in the 
  
    
      
        
          
            n 
           
          
            1 
           
         
       
     
    {\displaystyle \mathbf {n} _{1}} 
   
 principal stretches  are 
  
    
      
        
          λ 
          
            1 
           
         
        = 
        λ 
        , 
          
        
          λ 
          
            2 
           
         
        = 
        
          λ 
          
            3 
           
         
       
     
    {\displaystyle \lambda _{1}=\lambda ,~\lambda _{2}=\lambda _{3}} 
   
 
  
    
      
        
          λ 
          
            1 
           
         
          
        
          λ 
          
            2 
           
         
          
        
          λ 
          
            3 
           
         
        = 
        1 
       
     
    {\displaystyle \lambda _{1}~\lambda _{2}~\lambda _{3}=1} 
   
 
  
    
      
        
          λ 
          
            2 
           
          
            2 
           
         
        = 
        
          λ 
          
            3 
           
          
            2 
           
         
        = 
        1 
        
          / 
         
        λ 
       
     
    {\displaystyle \lambda _{2}^{2}=\lambda _{3}^{2}=1/\lambda } 
   
 
  
    
      
        
          I 
          
            1 
           
         
        = 
        
          λ 
          
            1 
           
          
            2 
           
         
        + 
        
          λ 
          
            2 
           
          
            2 
           
         
        + 
        
          λ 
          
            3 
           
          
            2 
           
         
        = 
        
          λ 
          
            2 
           
         
        + 
        
          
            
              
                 
              
                
                  2 
                 
               
             
            
              
                 
              
                
                  λ 
                 
               
             
           
         
          
        . 
       
     
    {\displaystyle I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}=\lambda ^{2}+{\cfrac {2}{\lambda }}~.} 
   
 The left Cauchy-Green deformation tensor  can then be expressed as
  
    
      
        
          B 
         
        = 
        
          λ 
          
            2 
           
         
          
        
          
            n 
           
          
            1 
           
         
        ⊗ 
        
          
            n 
           
          
            1 
           
         
        + 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  λ 
                 
               
             
           
         
          
        ( 
        
          
            n 
           
          
            2 
           
         
        ⊗ 
        
          
            n 
           
          
            2 
           
         
        + 
        
          
            n 
           
          
            3 
           
         
        ⊗ 
        
          
            n 
           
          
            3 
           
         
        ) 
          
        . 
       
     
    {\displaystyle {\boldsymbol {B}}=\lambda ^{2}~\mathbf {n} _{1}\otimes \mathbf {n} _{1}+{\cfrac {1}{\lambda }}~(\mathbf {n} _{2}\otimes \mathbf {n} _{2}+\mathbf {n} _{3}\otimes \mathbf {n} _{3})~.} 
   
 If the directions of the principal stretches are oriented with the coordinate basis vectors, we have
  
    
      
        
          σ 
          
            11 
           
         
        = 
        − 
        p 
        + 
        
          
            
              
                 
              
                
                  
                    λ 
                    
                      2 
                     
                   
                  μ 
                  
                    J 
                    
                      m 
                     
                   
                 
               
             
            
              
                 
              
                
                  
                    J 
                    
                      m 
                     
                   
                  − 
                  
                    I 
                    
                      1 
                     
                   
                  + 
                  3 
                 
               
             
           
         
          
        ; 
          
          
        
          σ 
          
            22 
           
         
        = 
        − 
        p 
        + 
        
          
            
              
                 
              
                
                  μ 
                  
                    J 
                    
                      m 
                     
                   
                 
               
             
            
              
                 
              
                
                  λ 
                  ( 
                  
                    J 
                    
                      m 
                     
                   
                  − 
                  
                    I 
                    
                      1 
                     
                   
                  + 
                  3 
                  ) 
                 
               
             
           
         
        = 
        
          σ 
          
            33 
           
         
          
        . 
       
     
    {\displaystyle \sigma _{11}=-p+{\cfrac {\lambda ^{2}\mu J_{m}}{J_{m}-I_{1}+3}}~;~~\sigma _{22}=-p+{\cfrac {\mu J_{m}}{\lambda (J_{m}-I_{1}+3)}}=\sigma _{33}~.} 
   
 If 
  
    
      
        
          σ 
          
            22 
           
         
        = 
        
          σ 
          
            33 
           
         
        = 
        0 
       
     
    {\displaystyle \sigma _{22}=\sigma _{33}=0} 
   
 
  
    
      
        p 
        = 
        
          
            
              
                 
              
                
                  μ 
                  
                    J 
                    
                      m 
                     
                   
                 
               
             
            
              
                 
              
                
                  λ 
                  ( 
                  
                    J 
                    
                      m 
                     
                   
                  − 
                  
                    I 
                    
                      1 
                     
                   
                  + 
                  3 
                  ) 
                 
               
             
           
         
          
        . 
       
     
    {\displaystyle p={\cfrac {\mu J_{m}}{\lambda (J_{m}-I_{1}+3)}}~.} 
   
 Therefore,
  
    
      
        
          σ 
          
            11 
           
         
        = 
        
          ( 
          
            
              λ 
              
                2 
               
             
            − 
            
              
                
                  
                     
                  
                    
                      1 
                     
                   
                 
                
                  
                     
                  
                    
                      λ 
                     
                   
                 
               
             
           
          ) 
         
        
          ( 
          
            
              
                
                   
                
                  
                    μ 
                    
                      J 
                      
                        m 
                       
                     
                   
                 
               
              
                
                   
                
                  
                    
                      J 
                      
                        m 
                       
                     
                    − 
                    
                      I 
                      
                        1 
                       
                     
                    + 
                    3 
                   
                 
               
             
           
          ) 
         
          
        . 
       
     
    {\displaystyle \sigma _{11}=\left(\lambda ^{2}-{\cfrac {1}{\lambda }}\right)\left({\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}\right)~.} 
   
 The engineering strain  is 
  
    
      
        λ 
        − 
        1 
         
     
    {\displaystyle \lambda -1\,} 
   
 engineering stress  is 
  
    
      
        
          T 
          
            11 
           
         
        = 
        
          σ 
          
            11 
           
         
        
          / 
         
        λ 
        = 
        
          ( 
          
            λ 
            − 
            
              
                
                  
                     
                  
                    
                      1 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        λ 
                        
                          2 
                         
                       
                     
                   
                 
               
             
           
          ) 
         
        
          ( 
          
            
              
                
                   
                
                  
                    μ 
                    
                      J 
                      
                        m 
                       
                     
                   
                 
               
              
                
                   
                
                  
                    
                      J 
                      
                        m 
                       
                     
                    − 
                    
                      I 
                      
                        1 
                       
                     
                    + 
                    3 
                   
                 
               
             
           
          ) 
         
          
        . 
       
     
    {\displaystyle T_{11}=\sigma _{11}/\lambda =\left(\lambda -{\cfrac {1}{\lambda ^{2}}}\right)\left({\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}\right)~.} 
   
 
Equibiaxial extension 
For equibiaxial extension in the 
  
    
      
        
          
            n 
           
          
            1 
           
         
       
     
    {\displaystyle \mathbf {n} _{1}} 
   
 
  
    
      
        
          
            n 
           
          
            2 
           
         
       
     
    {\displaystyle \mathbf {n} _{2}} 
   
 principal stretches  are 
  
    
      
        
          λ 
          
            1 
           
         
        = 
        
          λ 
          
            2 
           
         
        = 
        λ 
         
     
    {\displaystyle \lambda _{1}=\lambda _{2}=\lambda \,} 
   
 
  
    
      
        
          λ 
          
            1 
           
         
          
        
          λ 
          
            2 
           
         
          
        
          λ 
          
            3 
           
         
        = 
        1 
       
     
    {\displaystyle \lambda _{1}~\lambda _{2}~\lambda _{3}=1} 
   
 
  
    
      
        
          λ 
          
            3 
           
         
        = 
        1 
        
          / 
         
        
          λ 
          
            2 
           
         
         
     
    {\displaystyle \lambda _{3}=1/\lambda ^{2}\,} 
   
 
  
    
      
        
          I 
          
            1 
           
         
        = 
        
          λ 
          
            1 
           
          
            2 
           
         
        + 
        
          λ 
          
            2 
           
          
            2 
           
         
        + 
        
          λ 
          
            3 
           
          
            2 
           
         
        = 
        2 
          
        
          λ 
          
            2 
           
         
        + 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  
                    λ 
                    
                      4 
                     
                   
                 
               
             
           
         
          
        . 
       
     
    {\displaystyle I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}=2~\lambda ^{2}+{\cfrac {1}{\lambda ^{4}}}~.} 
   
 The left Cauchy-Green deformation tensor  can then be expressed as
  
    
      
        
          B 
         
        = 
        
          λ 
          
            2 
           
         
          
        
          
            n 
           
          
            1 
           
         
        ⊗ 
        
          
            n 
           
          
            1 
           
         
        + 
        
          λ 
          
            2 
           
         
          
        
          
            n 
           
          
            2 
           
         
        ⊗ 
        
          
            n 
           
          
            2 
           
         
        + 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  
                    λ 
                    
                      4 
                     
                   
                 
               
             
           
         
          
        
          
            n 
           
          
            3 
           
         
        ⊗ 
        
          
            n 
           
          
            3 
           
         
          
        . 
       
     
    {\displaystyle {\boldsymbol {B}}=\lambda ^{2}~\mathbf {n} _{1}\otimes \mathbf {n} _{1}+\lambda ^{2}~\mathbf {n} _{2}\otimes \mathbf {n} _{2}+{\cfrac {1}{\lambda ^{4}}}~\mathbf {n} _{3}\otimes \mathbf {n} _{3}~.} 
   
 If the directions of the principal stretches are oriented with the coordinate basis vectors, we have
  
    
      
        
          σ 
          
            11 
           
         
        = 
        
          ( 
          
            
              λ 
              
                2 
               
             
            − 
            
              
                
                  
                     
                  
                    
                      1 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        λ 
                        
                          4 
                         
                       
                     
                   
                 
               
             
           
          ) 
         
        
          ( 
          
            
              
                
                   
                
                  
                    μ 
                    
                      J 
                      
                        m 
                       
                     
                   
                 
               
              
                
                   
                
                  
                    
                      J 
                      
                        m 
                       
                     
                    − 
                    
                      I 
                      
                        1 
                       
                     
                    + 
                    3 
                   
                 
               
             
           
          ) 
         
        = 
        
          σ 
          
            22 
           
         
          
        . 
       
     
    {\displaystyle \sigma _{11}=\left(\lambda ^{2}-{\cfrac {1}{\lambda ^{4}}}\right)\left({\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}\right)=\sigma _{22}~.} 
   
 The engineering strain  is 
  
    
      
        λ 
        − 
        1 
         
     
    {\displaystyle \lambda -1\,} 
   
 engineering stress  is 
  
    
      
        
          T 
          
            11 
           
         
        = 
        
          
            
              
                 
              
                
                  
                    σ 
                    
                      11 
                     
                   
                 
               
             
            
              
                 
              
                
                  λ 
                 
               
             
           
         
        = 
        
          ( 
          
            λ 
            − 
            
              
                
                  
                     
                  
                    
                      1 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        λ 
                        
                          5 
                         
                       
                     
                   
                 
               
             
           
          ) 
         
        
          ( 
          
            
              
                
                   
                
                  
                    μ 
                    
                      J 
                      
                        m 
                       
                     
                   
                 
               
              
                
                   
                
                  
                    
                      J 
                      
                        m 
                       
                     
                    − 
                    
                      I 
                      
                        1 
                       
                     
                    + 
                    3 
                   
                 
               
             
           
          ) 
         
        = 
        
          T 
          
            22 
           
         
          
        . 
       
     
    {\displaystyle T_{11}={\cfrac {\sigma _{11}}{\lambda }}=\left(\lambda -{\cfrac {1}{\lambda ^{5}}}\right)\left({\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}\right)=T_{22}~.} 
   
 
Planar extension 
Planar extension tests are carried out on thin specimens which are constrained from deforming in one direction.  For planar extension in the 
  
    
      
        
          
            n 
           
          
            1 
           
         
       
     
    {\displaystyle \mathbf {n} _{1}} 
   
 
  
    
      
        
          
            n 
           
          
            3 
           
         
       
     
    {\displaystyle \mathbf {n} _{3}} 
   
 principal stretches  are 
  
    
      
        
          λ 
          
            1 
           
         
        = 
        λ 
        , 
          
        
          λ 
          
            3 
           
         
        = 
        1 
       
     
    {\displaystyle \lambda _{1}=\lambda ,~\lambda _{3}=1} 
   
 
  
    
      
        
          λ 
          
            1 
           
         
          
        
          λ 
          
            2 
           
         
          
        
          λ 
          
            3 
           
         
        = 
        1 
       
     
    {\displaystyle \lambda _{1}~\lambda _{2}~\lambda _{3}=1} 
   
 
  
    
      
        
          λ 
          
            2 
           
         
        = 
        1 
        
          / 
         
        λ 
         
     
    {\displaystyle \lambda _{2}=1/\lambda \,} 
   
 
  
    
      
        
          I 
          
            1 
           
         
        = 
        
          λ 
          
            1 
           
          
            2 
           
         
        + 
        
          λ 
          
            2 
           
          
            2 
           
         
        + 
        
          λ 
          
            3 
           
          
            2 
           
         
        = 
        
          λ 
          
            2 
           
         
        + 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  
                    λ 
                    
                      2 
                     
                   
                 
               
             
           
         
        + 
        1 
          
        . 
       
     
    {\displaystyle I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}=\lambda ^{2}+{\cfrac {1}{\lambda ^{2}}}+1~.} 
   
 The left Cauchy-Green deformation tensor  can then be expressed as
  
    
      
        
          B 
         
        = 
        
          λ 
          
            2 
           
         
          
        
          
            n 
           
          
            1 
           
         
        ⊗ 
        
          
            n 
           
          
            1 
           
         
        + 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  
                    λ 
                    
                      2 
                     
                   
                 
               
             
           
         
          
        
          
            n 
           
          
            2 
           
         
        ⊗ 
        
          
            n 
           
          
            2 
           
         
        + 
        
          
            n 
           
          
            3 
           
         
        ⊗ 
        
          
            n 
           
          
            3 
           
         
          
        . 
       
     
    {\displaystyle {\boldsymbol {B}}=\lambda ^{2}~\mathbf {n} _{1}\otimes \mathbf {n} _{1}+{\cfrac {1}{\lambda ^{2}}}~\mathbf {n} _{2}\otimes \mathbf {n} _{2}+\mathbf {n} _{3}\otimes \mathbf {n} _{3}~.} 
   
 If the directions of the principal stretches are oriented with the coordinate basis vectors, we have
  
    
      
        
          σ 
          
            11 
           
         
        = 
        
          ( 
          
            
              λ 
              
                2 
               
             
            − 
            
              
                
                  
                     
                  
                    
                      1 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        λ 
                        
                          2 
                         
                       
                     
                   
                 
               
             
           
          ) 
         
        
          ( 
          
            
              
                
                   
                
                  
                    μ 
                    
                      J 
                      
                        m 
                       
                     
                   
                 
               
              
                
                   
                
                  
                    
                      J 
                      
                        m 
                       
                     
                    − 
                    
                      I 
                      
                        1 
                       
                     
                    + 
                    3 
                   
                 
               
             
           
          ) 
         
          
        ; 
          
          
        
          σ 
          
            22 
           
         
        = 
        0 
          
        ; 
          
          
        
          σ 
          
            33 
           
         
        = 
        
          ( 
          
            1 
            − 
            
              
                
                  
                     
                  
                    
                      1 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        λ 
                        
                          2 
                         
                       
                     
                   
                 
               
             
           
          ) 
         
        
          ( 
          
            
              
                
                   
                
                  
                    μ 
                    
                      J 
                      
                        m 
                       
                     
                   
                 
               
              
                
                   
                
                  
                    
                      J 
                      
                        m 
                       
                     
                    − 
                    
                      I 
                      
                        1 
                       
                     
                    + 
                    3 
                   
                 
               
             
           
          ) 
         
          
        . 
       
     
    {\displaystyle \sigma _{11}=\left(\lambda ^{2}-{\cfrac {1}{\lambda ^{2}}}\right)\left({\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}\right)~;~~\sigma _{22}=0~;~~\sigma _{33}=\left(1-{\cfrac {1}{\lambda ^{2}}}\right)\left({\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}\right)~.} 
   
 The engineering strain  is 
  
    
      
        λ 
        − 
        1 
         
     
    {\displaystyle \lambda -1\,} 
   
 engineering stress  is 
  
    
      
        
          T 
          
            11 
           
         
        = 
        
          
            
              
                 
              
                
                  
                    σ 
                    
                      11 
                     
                   
                 
               
             
            
              
                 
              
                
                  λ 
                 
               
             
           
         
        = 
        
          ( 
          
            λ 
            − 
            
              
                
                  
                     
                  
                    
                      1 
                     
                   
                 
                
                  
                     
                  
                    
                      
                        λ 
                        
                          3 
                         
                       
                     
                   
                 
               
             
           
          ) 
         
        
          ( 
          
            
              
                
                   
                
                  
                    μ 
                    
                      J 
                      
                        m 
                       
                     
                   
                 
               
              
                
                   
                
                  
                    
                      J 
                      
                        m 
                       
                     
                    − 
                    
                      I 
                      
                        1 
                       
                     
                    + 
                    3 
                   
                 
               
             
           
          ) 
         
          
        . 
       
     
    {\displaystyle T_{11}={\cfrac {\sigma _{11}}{\lambda }}=\left(\lambda -{\cfrac {1}{\lambda ^{3}}}\right)\left({\cfrac {\mu J_{m}}{J_{m}-I_{1}+3}}\right)~.} 
   
 
Simple shear 
The deformation gradient for a simple shear  deformation has the form[ 4] 
  
    
      
        
          F 
         
        = 
        
          1 
         
        + 
        γ 
          
        
          
            e 
           
          
            1 
           
         
        ⊗ 
        
          
            e 
           
          
            2 
           
         
       
     
    {\displaystyle {\boldsymbol {F}}={\boldsymbol {1}}+\gamma ~\mathbf {e} _{1}\otimes \mathbf {e} _{2}} 
   
 where 
  
    
      
        
          
            e 
           
          
            1 
           
         
        , 
        
          
            e 
           
          
            2 
           
         
       
     
    {\displaystyle \mathbf {e} _{1},\mathbf {e} _{2}} 
   
 
  
    
      
        γ 
        = 
        λ 
        − 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  λ 
                 
               
             
           
         
          
        ; 
          
          
        
          λ 
          
            1 
           
         
        = 
        λ 
          
        ; 
          
          
        
          λ 
          
            2 
           
         
        = 
        
          
            
              
                 
              
                
                  1 
                 
               
             
            
              
                 
              
                
                  λ 
                 
               
             
           
         
          
        ; 
          
          
        
          λ 
          
            3 
           
         
        = 
        1 
       
     
    {\displaystyle \gamma =\lambda -{\cfrac {1}{\lambda }}~;~~\lambda _{1}=\lambda ~;~~\lambda _{2}={\cfrac {1}{\lambda }}~;~~\lambda _{3}=1} 
   
 In matrix form, the deformation gradient and the left Cauchy-Green deformation tensor may then be expressed as
  
    
      
        
          F 
         
        = 
        
          
            [ 
            
              
                
                  1 
                 
                
                  γ 
                 
                
                  0 
                 
               
              
                
                  0 
                 
                
                  1 
                 
                
                  0 
                 
               
              
                
                  0 
                 
                
                  0 
                 
                
                  1 
                 
               
             
            ] 
           
         
          
        ; 
          
          
        
          B 
         
        = 
        
          F 
         
        ⋅ 
        
          
            F 
           
          
            T 
           
         
        = 
        
          
            [ 
            
              
                
                  1 
                  + 
                  
                    γ 
                    
                      2 
                     
                   
                 
                
                  γ 
                 
                
                  0 
                 
               
              
                
                  γ 
                 
                
                  1 
                 
                
                  0 
                 
               
              
                
                  0 
                 
                
                  0 
                 
                
                  1 
                 
               
             
            ] 
           
         
       
     
    {\displaystyle {\boldsymbol {F}}={\begin{bmatrix}1&\gamma &0\\0&1&0\\0&0&1\end{bmatrix}}~;~~{\boldsymbol {B}}={\boldsymbol {F}}\cdot {\boldsymbol {F}}^{T}={\begin{bmatrix}1+\gamma ^{2}&\gamma &0\\\gamma &1&0\\0&0&1\end{bmatrix}}} 
   
 Therefore, 
  
    
      
        
          I 
          
            1 
           
         
        = 
        
          t 
          r 
         
        ( 
        
          B 
         
        ) 
        = 
        3 
        + 
        
          γ 
          
            2 
           
         
       
     
    {\displaystyle I_{1}=\mathrm {tr} ({\boldsymbol {B}})=3+\gamma ^{2}} 
   
 and the Cauchy stress is given by
  
    
      
        
          σ 
         
        = 
        − 
        p 
          
        
          
            1 
           
         
        + 
        
          
            
              
                 
              
                
                  μ 
                  
                    J 
                    
                      m 
                     
                   
                 
               
             
            
              
                 
              
                
                  
                    J 
                    
                      m 
                     
                   
                  − 
                  
                    γ 
                    
                      2 
                     
                   
                 
               
             
           
         
          
        
          B 
         
       
     
    {\displaystyle {\boldsymbol {\sigma }}=-p~{\boldsymbol {\mathit {1}}}+{\cfrac {\mu J_{m}}{J_{m}-\gamma ^{2}}}~{\boldsymbol {B}}} 
   
 In matrix form,
  
    
      
        
          σ 
         
        = 
        
          
            [ 
            
              
                
                  − 
                  p 
                  + 
                  
                    
                      
                        
                           
                        
                          
                            μ 
                            
                              J 
                              
                                m 
                               
                             
                            ( 
                            1 
                            + 
                            
                              γ 
                              
                                2 
                               
                             
                            ) 
                           
                         
                       
                      
                        
                           
                        
                          
                            
                              J 
                              
                                m 
                               
                             
                            − 
                            
                              γ 
                              
                                2 
                               
                             
                           
                         
                       
                     
                   
                 
                
                  
                    
                      
                        
                           
                        
                          
                            μ 
                            
                              J 
                              
                                m 
                               
                             
                            γ 
                           
                         
                       
                      
                        
                           
                        
                          
                            
                              J 
                              
                                m 
                               
                             
                            − 
                            
                              γ 
                              
                                2 
                               
                             
                           
                         
                       
                     
                   
                 
                
                  0 
                 
               
              
                
                  
                    
                      
                        
                           
                        
                          
                            μ 
                            
                              J 
                              
                                m 
                               
                             
                            γ 
                           
                         
                       
                      
                        
                           
                        
                          
                            
                              J 
                              
                                m 
                               
                             
                            − 
                            
                              γ 
                              
                                2 
                               
                             
                           
                         
                       
                     
                   
                 
                
                  − 
                  p 
                  + 
                  
                    
                      
                        
                           
                        
                          
                            μ 
                            
                              J 
                              
                                m 
                               
                             
                           
                         
                       
                      
                        
                           
                        
                          
                            
                              J 
                              
                                m 
                               
                             
                            − 
                            
                              γ 
                              
                                2 
                               
                             
                           
                         
                       
                     
                   
                 
                
                  0 
                 
               
              
                
                  0 
                 
                
                  0 
                 
                
                  − 
                  p 
                  + 
                  
                    
                      
                        
                           
                        
                          
                            μ 
                            
                              J 
                              
                                m 
                               
                             
                           
                         
                       
                      
                        
                           
                        
                          
                            
                              J 
                              
                                m 
                               
                             
                            − 
                            
                              γ 
                              
                                2 
                               
                             
                           
                         
                       
                     
                   
                 
               
             
            ] 
           
         
       
     
    {\displaystyle {\boldsymbol {\sigma }}={\begin{bmatrix}-p+{\cfrac {\mu J_{m}(1+\gamma ^{2})}{J_{m}-\gamma ^{2}}}&{\cfrac {\mu J_{m}\gamma }{J_{m}-\gamma ^{2}}}&0\\{\cfrac {\mu J_{m}\gamma }{J_{m}-\gamma ^{2}}}&-p+{\cfrac {\mu J_{m}}{J_{m}-\gamma ^{2}}}&0\\0&0&-p+{\cfrac {\mu J_{m}}{J_{m}-\gamma ^{2}}}\end{bmatrix}}} 
   
 
References 
^ a b   Gent, A.N., 1996,  A new constitutive relation for rubber , Rubber Chemistry Tech., 69, pp. 59-61. 
^ Mac Donald, B. J., 2007, Practical stress analysis with finite elements , Glasnevin, Ireland. 
^ Horgan, Cornelius O.; Saccomandi, Giuseppe (2004-11-01). "Constitutive Models for Compressible Nonlinearly Elastic Materials with Limiting Chain Extensibility" Journal of Elasticity . 77  (2): 123– 138. doi :10.1007/s10659-005-4408-x . ISSN  1573-2681 . ^ Ogden, R. W., 1984, Non-linear elastic deformations , Dover. 
 
See also