In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.
Hölder's inequality—Let (S, Σ, μ) be a measure space and let p, q ∈ [1, ∞] with 1/p + 1/q = 1. Then for all measurable real- or complex-valued functions f and g on S,
If, in addition, p, q ∈ (1, ∞) and f ∈ Lp(μ) and g ∈ Lq(μ), then Hölder's inequality becomes an equality if and only if |f |p and |g|q are linearly dependent in L1(μ), meaning that there exist real numbers α, β ≥ 0, not both of them zero, such that α|f |p = β |g|q μ-almost everywhere.
 
The numbers p and q above are said to be Hölder conjugates of each other. The special case p = q = 2 gives a form of the Cauchy–Schwarz inequality.[1] Hölder's inequality holds even if ‖fg‖1 is infinite, the right-hand side also being infinite in that case. Conversely, if f is in Lp(μ) and g is in Lq(μ), then the pointwise product fg is in L1(μ).
Hölder's inequality is used to prove the Minkowski inequality, which is the triangle inequality in the space Lp(μ), and also to establish that Lq(μ) is the dual space of Lp(μ) for p ∈ [1, ∞).
Hölder's inequality (in a slightly different form) was first found by Leonard James Rogers (1888). Inspired by Rogers' work, Hölder (1889) gave another proof as part of a work developing the concept of convex and concave functions and introducing Jensen's inequality,[2] which was in turn named for work of Johan Jensen building on Hölder's work.[3]
Conventions
The brief statement of Hölder's inequality uses some conventions.
- In the definition of Hölder conjugates, 1/∞ means zero.
 
- If p, q ∈ [1, ∞), then ‖f ‖p and ‖g‖q stand for the (possibly infinite) expressions
 

- If p = ∞, then ‖f ‖∞ stands for the essential supremum of |f |, similarly for ‖g‖∞.
 
- The notation ‖f ‖p with 1 ≤ p ≤ ∞ is a slight abuse, because in general it is only a norm of f if ‖f ‖p is finite and f is considered as equivalence class of μ-almost everywhere equal functions. If  f ∈ Lp(μ) and g ∈ Lq(μ), then the notation is adequate.
 
- On the right-hand side of Hölder's inequality, 0 × ∞ as well as ∞ × 0 means 0. Multiplying a > 0 with ∞ gives ∞.
 
Estimates for integrable products
As above, let f and g denote measurable real- or complex-valued functions defined on S. If ‖fg‖1 is finite, then the pointwise products of f with g and its complex conjugate function are μ-integrable, the estimate

and the similar one for fg hold, and Hölder's inequality can be applied to the right-hand side. In particular, if f and g are in the Hilbert space L2(μ), then Hölder's inequality for p = q = 2 implies

where the angle brackets refer to the inner product of L2(μ). This is also called Cauchy–Schwarz inequality, but requires for its statement that ‖f ‖2 and ‖g‖2 are finite to make sure that the inner product of f and g is well defined. We may recover the original inequality (for the case p = 2) by using the functions |f | and |g| in place of f and g.
Generalization for probability measures
If (S, Σ, μ) is a probability space, then p, q ∈ [1, ∞] just need to satisfy 1/p + 1/q ≤ 1, rather than being Hölder conjugates. A combination of Hölder's inequality and Jensen's inequality implies that

for all measurable real- or complex-valued functions f and g on S.
Notable special cases
For the following cases assume that p and q are in the open interval (1,∞) with 1/p + 1/q = 1.
Counting measure
For the 
-dimensional Euclidean space, when the set 
 is 
 with the counting measure, we have

Often the following practical form of this is used, for any 
:

For more than two sums, the following generalisation (Lohwater (1982), Chen (2014)) holds, with real positive exponents   
 and 
:

Equality holds iff  
.
If 
 with the counting measure, then we get Hölder's inequality for sequence spaces:

Lebesgue measure
If 
 is a measurable subset of 
 with the Lebesgue measure, and 
 and 
 are measurable real- or complex-valued functions on 
, then Hölder's inequality is

Probability measure
For the probability space 
 let 
 denote the expectation operator. For real- or complex-valued random variables 
 and 
 on 
 Hölder's inequality reads
![{\displaystyle \mathbb {E} [|XY|]\leqslant \left(\mathbb {E} {\bigl [}|X|^{p}{\bigr ]}\right)^{\frac {1}{p}}\left(\mathbb {E} {\bigl [}|Y|^{q}{\bigr ]}\right)^{\frac {1}{q}}.}](./_assets_/1dd0a121fff59e9834e8096b7c5856aab8a1944b.svg)
Let 
  and define 
 Then 
 is the Hölder conjugate of 
 Applying Hölder's inequality to the random variables 
 and 
 we obtain
![{\displaystyle \mathbb {E} {\bigl [}|X|^{r}{\bigr ]}\leqslant \left(\mathbb {E} {\bigl [}|X|^{s}{\bigr ]}\right)^{\frac {r}{s}}.}](./_assets_/cd851f8c44f4192b9ba15761127d566b226a4ff0.svg)
In particular, if the sth absolute moment is finite, then the r th absolute moment is finite, too. (This also follows from Jensen's inequality.)
Product measure
For two σ-finite measure spaces (S1, Σ1, μ1) and (S2, Σ2, μ2) define the product measure space by

where S is the Cartesian product of S1 and S2, the σ-algebra Σ arises as product σ-algebra of Σ1 and Σ2, and μ denotes the product measure of μ1 and μ2. Then Tonelli's theorem allows us to rewrite Hölder's inequality using iterated integrals: If f and g are Σ-measurable real- or complex-valued functions on the Cartesian product S, then

This can be generalized to more than two σ-finite measure spaces.
Vector-valued functions
Let (S, Σ, μ) denote a σ-finite measure space and suppose that f = (f1, ..., fn) and g = (g1, ..., gn) are Σ-measurable functions on S, taking values in the n-dimensional real- or complex Euclidean space. By taking the product with the counting measure on {1, ..., n}, we can rewrite the above product measure version of Hölder's inequality in the form

If the two integrals on the right-hand side are finite, then equality holds if and only if there exist real numbers α, β ≥ 0, not both of them zero, such that

for μ-almost all x in S.
This finite-dimensional version generalizes to functions f and g taking values in a normed space which could be for example a sequence space or an inner product space.
Proof of Hölder's inequality
There are several proofs of Hölder's inequality; the main idea in the following is Young's inequality for products.
Proof
If ‖f ‖p = 0, then f is zero μ-almost everywhere, and the product fg is zero μ-almost everywhere, hence the left-hand side of Hölder's inequality is zero. 
The same is true if ‖g‖q = 0. 
Therefore, we may assume ‖f ‖p > 0 and ‖g‖q > 0 in the following. 
If ‖f ‖p = ∞ or ‖g‖q = ∞, then the right-hand side of Hölder's inequality is infinite. 
Therefore, we may assume that ‖f ‖p and ‖g‖q are in (0, ∞). 
If p = ∞ and q = 1, then |fg| ≤ ‖f ‖∞ |g| almost everywhere and Hölder's inequality follows from the monotonicity of the Lebesgue integral. Similarly for p = 1 and q = ∞. 
Therefore, we may assume p, q ∈ (1,∞).
We now use Young's inequality for products, which states that whenever 
 are in (1,∞) with 

for all nonnegative a and b, where equality is achieved if and only if ap = bq. Hence

Integrating both sides gives

which proves the claim.
Under the assumptions p ∈ (1, ∞) and ‖f ‖p = ‖g‖q, equality holds if and only if |f |p = |g|q almost everywhere. 
More generally, if ‖f ‖p and ‖g‖q are in (0, ∞), then Hölder's inequality becomes an equality if and only if there exist real numbers α, β > 0, namely

such that
   μ-almost everywhere   (*).
The case ‖f ‖p = 0 corresponds to β = 0 in (*). The case ‖g‖q = 0 corresponds to α = 0 in (*).
 
Alternative proof using Jensen's inequality:
Proof
The function 
 on (0,∞) is convex because 
, so by Jensen's inequality, 

where ν is any probability distribution and h any ν-measurable function. Let μ be any measure, and ν the distribution whose density w.r.t. μ is proportional to 
, i.e.

Hence we have, using 
, hence 
, and letting 
,

Finally, we get

This assumes that f, g are real and non-negative, but the extension to complex functions is straightforward (use the modulus of f, g). 
It also assumes that 
 are neither null nor infinity, and that 
: all these assumptions can also be lifted as in the proof above.
 
We could also bypass use of both Young's and Jensen's inequalities. The proof below also explains why and where the Hölder exponent comes in naturally.
Proof
As in the previous proof, it suffices to prove

where 
 and  
 is 
-measurable (real or complex) function on 
. To prove this, we must bound 
 by  
. There is no constant  
 that will make 
 for all  
. Hence, we seek an inequality of the form

for suitable choices of  
 and  
.
We wish to obtain  
 on the right-hand side after integrating this inequality. By trial and error, we see that the inequality we wish should have the form

where 
 are non-negative and 
. Indeed, the integral of the right-hand side is precisely 
. So, it remains to prove that such an inequality does hold with the right choice of 
The inequality we seek would follow from: 

which, in turn, is equivalent to

It turns out there is one and only one choice of 
, subject to 
, that makes this true: 
 and, necessarily, 
. (This is where Hölder conjugate exponent is born!) This completes the proof of the inequality at the first paragraph of this proof. Proof of Hölder's inequality follows from this as in the previous proof. Alternatively, we can deduce Young's inequality and then resort to the first proof given above. Young's inequality follows from the inequality (*) above by choosing 
 and multiplying both sides by 
.
 
Extremal equality
Statement
Assume that 1 ≤ p < ∞ and let q denote the Hölder conjugate. Then for every f ∈ Lp(μ),

where max indicates that there actually is a g maximizing the right-hand side. When p = ∞ and if each set A in the σ-field Σ with μ(A) = ∞ contains a subset B ∈ Σ with 0 < μ(B) < ∞ (which is true in particular when μ is σ-finite), then

Proof of the extremal equality:
Proof
By Hölder's inequality, the integrals are well defined and, for 1 ≤ p ≤ ∞,

hence the left-hand side is always bounded above by the right-hand side.
Conversely, for 1 ≤ p ≤ ∞, observe first that the statement is obvious when ‖f ‖p = 0. Therefore, we assume ‖f ‖p > 0 in the following.
If 1 ≤ p < ∞, define g on S by

By checking the cases p = 1 and 1 < p < ∞ separately, we see that ‖g‖q = 1 and

It remains to consider the case p = ∞. For ε ∈ (0, 1) define

Since f is measurable, A ∈ Σ. By the definition of ‖f ‖∞ as the essential supremum of f and the assumption ‖f ‖∞ > 0, we have μ(A) > 0. Using the additional assumption on the σ-field Σ if necessary, there exists a subset B ∈ Σ of A with 0 < μ(B) < ∞. Define g on S by

Then g is well-defined, measurable and |g(x)| ≤ 1/μ(B) for x ∈ B, hence ‖g‖1 ≤ 1. Furthermore,

 
Remarks and examples
- The equality for 
 fails whenever there exists a set 
 of infinite measure in the 
-field 
 with that has no subset 
 that satisfies: 
 (the simplest example is the 
-field  
 containing just the empty set and 
 and the measure 
 with 
) Then the indicator function 
 satisfies 
 but every 
 has to be 
-almost everywhere constant on 
 because it is 
-measurable, and this constant has to be zero, because 
 is 
-integrable. Therefore, the above supremum for the indicator function 
 is zero and the extremal equality fails. 
- For 
 the supremum is in general not attained. As an example, let 
 and 
 the counting measure. Define: 

- Then 
 For 
 with 
 let 
 denote the smallest natural number with 
 Then 

Applications
- The extremal equality is one of the ways for proving the triangle inequality ‖f1 + f2‖p ≤ ‖f1‖p + ‖f2‖p for all f1 and f2 in Lp(μ), see Minkowski inequality.
 
- Hölder's inequality implies that every f ∈ Lp(μ) defines a bounded (or continuous) linear functional κf on Lq(μ) by the formula
 

 
- The extremal equality (when true) shows that the norm of this functional κf as element of the continuous dual space Lq(μ)* coincides with the norm of f in Lp(μ) (see also the Lp-space article).
 
Generalization with more than two functions
Statement
Assume that r ∈ (0, ∞] and p1, ..., pn ∈  (0, ∞] such that

where 1/∞ is interpreted as 0 in this equation, and r=∞ implies p1, ..., pn ∈  (0, ∞] are all equal to ∞.  Then, for all measurable real or complex-valued functions f1, ..., fn defined on S,

where we interpret any product with a factor of ∞ as ∞ if all factors are positive, but the product is 0 if any factor is 0.
In particular, if 
 for all 
 then 
Note: For 
 contrary to the notation, ‖.‖r is in general not a norm because it doesn't satisfy the triangle inequality.
Proof of the generalization:
Proof
We use Hölder's inequality and mathematical induction. If 
 then the result is immediate. Let us now pass from 
 to 
 Without loss of generality assume that 
Case 1: If 
 then

Pulling out the essential supremum of |fn| and using the induction hypothesis, we get

Case 2: If 
 then necessarily 
 as well, and then

are Hölder conjugates in (1, ∞). Application of Hölder's inequality gives

Raising to the power 
 and rewriting,

Since 
 and

the claimed inequality now follows by using the induction hypothesis.
 
Interpolation
Let p1, ..., pn ∈  (0, ∞] and let θ1, ..., θn ∈ (0, 1) denote weights with θ1 + ... + θn = 1. Define 
 as the weighted harmonic mean, that is,

Given measurable real- or complex-valued functions 
 on S, then the above generalization of Hölder's inequality gives

In particular, taking 
 gives

Specifying further θ1 = θ and θ2 = 1-θ, in the case 
 we obtain the interpolation result 
Littlewood's inequality—For 
 and 
, 
 
An application of Hölder gives 
Lyapunov's inequality—If 
 then
and in particular
 
Both Littlewood and Lyapunov imply that if 
 then 
 for all 
[4]
Reverse Hölder inequalities
Two functions
Assume that p ∈ (1, ∞) and that the measure space (S, Σ, μ) satisfies μ(S) > 0. Then for all measurable real- or complex-valued functions f and g on S such that g(s) ≠ 0 for μ-almost all s ∈ S,

If

then the reverse Hölder inequality is an equality if and only if

Note: The expressions:
 and 
are not norms, they are just compact notations for

Proof of the reverse Hölder inequality (hidden, click show to reveal.)
Note that p and

are Hölder conjugates. 
Application of Hölder's inequality gives

Raising to the power p gives us:

Therefore:

Now we just need to recall our notation.
Since 
g is not almost everywhere equal to the zero function, we can have equality if and only if there exists a constant 
α ≥ 0 such that 
|fg| = α |g|−q/p almost everywhere. Solving for the absolute value of 
f gives the claim.
  
Multiple functions
The Reverse Hölder inequality (above) can be generalized to the case of multiple functions if all but one conjugate is negative.
That is,
- Let 
 and 
 be such that 
 (hence 
). Let 
 be measurable functions for 
. Then 

This follows from the symmetric form of the Hölder inequality (see below).
It was observed by Aczél and Beckenbach[5] that Hölder's inequality can be put in a more symmetric form, at the price of introducing an extra vector (or function): 
Let 
 be vectors with positive entries and such that 
 for all 
. If 
 are nonzero real numbers such that 
, then:
 if all but one of 
 are positive; 
 if all but one of 
 are negative.
The standard Hölder inequality follows immediately from this symmetric form (and in fact is easily seen to be equivalent to it). The symmetric statement also implies the reverse Hölder inequality (see above).
The result can be extended to multiple vectors: 
Let 
 be 
 vectors in 
 with positive entries and such that 
 for all 
. If 
 are nonzero real numbers such that 
, then:
 if all but one of the numbers 
 are positive; 
 if all but one of the numbers 
 are negative.
As in the standard Hölder inequalities, there are corresponding statements for infinite sums and integrals.
Conditional Hölder inequality
Let (Ω, F, 
) be a probability space, G ⊂ F a sub-σ-algebra, and p, q ∈ (1, ∞) Hölder conjugates, meaning that 1/p + 1/q = 1. Then for all real- or complex-valued random variables X and Y on Ω,
![{\displaystyle \mathbb {E} {\bigl [}|XY|{\big |}\,{\mathcal {G}}{\bigr ]}\leq {\bigl (}\mathbb {E} {\bigl [}|X|^{p}{\big |}\,{\mathcal {G}}{\bigr ]}{\bigr )}^{\frac {1}{p}}\,{\bigl (}\mathbb {E} {\bigl [}|Y|^{q}{\big |}\,{\mathcal {G}}{\bigr ]}{\bigr )}^{\frac {1}{q}}\qquad \mathbb {P} {\text{-almost surely.}}}](./_assets_/e6089e918b0a4facc49f7cedbf332e697a1628b2.svg)
Remarks:
![{\displaystyle \mathbb {E} [Z|{\mathcal {G}}]=\sup _{n\in \mathbb {N} }\,\mathbb {E} [\min\{Z,n\}|{\mathcal {G}}]\quad {\text{a.s.}}}](./_assets_/a4a4a866e15be4bdc2156438f9cf3d1a5db57683.svg)
- On the right-hand side of the conditional Hölder inequality, 0 times ∞ as well as ∞ times 0 means 0. Multiplying a > 0 with ∞ gives ∞.
 
Proof of the conditional Hölder inequality:
Proof
Define the random variables
![{\displaystyle U={\bigl (}\mathbb {E} {\bigl [}|X|^{p}{\big |}\,{\mathcal {G}}{\bigr ]}{\bigr )}^{\frac {1}{p}},\qquad V={\bigl (}\mathbb {E} {\bigl [}|Y|^{q}{\big |}\,{\mathcal {G}}{\bigr ]}{\bigr )}^{\frac {1}{q}}}](./_assets_/9e9e39640f4dc158a566bee7b5696f5140631f0a.svg)
and note that they are measurable with respect to the sub-σ-algebra. Since
![{\displaystyle \mathbb {E} {\bigl [}|X|^{p}1_{\{U=0\}}{\bigr ]}=\mathbb {E} {\bigl [}1_{\{U=0\}}\underbrace {\mathbb {E} {\bigl [}|X|^{p}{\big |}\,{\mathcal {G}}{\bigr ]}} _{=\,U^{p}}{\bigr ]}=0,}](./_assets_/69905a3f486cbf984d99a2f968dcaf08195f637e.svg)
it follows that |X| = 0 a.s. on the set {U = 0}. Similarly, |Y| = 0 a.s. on the set {V = 0}, hence
![{\displaystyle \mathbb {E} {\bigl [}|XY|{\big |}\,{\mathcal {G}}{\bigr ]}=0\qquad {\text{a.s. on }}\{U=0\}\cup \{V=0\}}](./_assets_/e863f914e038ef3ab57ac04eaae91d3ff6da6550.svg)
and the conditional Hölder inequality holds on this set. On the set

the right-hand side is infinite and the conditional Hölder inequality holds, too. Dividing by the right-hand side, it therefore remains to show that
![{\displaystyle {\frac {\mathbb {E} {\bigl [}|XY|{\big |}\,{\mathcal {G}}{\bigr ]}}{UV}}\leq 1\qquad {\text{a.s. on the set }}H:=\{0<U<\infty ,\,0<V<\infty \}.}](./_assets_/456a39a139248e5750c23688a36b7b3aeb750aff.svg)
This is done by verifying that the inequality holds after integration over an arbitrary

Using the measurability of U, V, 1G with respect to the sub-σ-algebra, the rules for conditional expectations, Hölder's inequality and 1/p + 1/q = 1, we see that
![{\displaystyle {\begin{aligned}\mathbb {E} {\biggl [}{\frac {\mathbb {E} {\bigl [}|XY|{\big |}\,{\mathcal {G}}{\bigr ]}}{UV}}1_{G}{\biggr ]}&=\mathbb {E} {\biggl [}\mathbb {E} {\biggl [}{\frac {|XY|}{UV}}1_{G}{\bigg |}\,{\mathcal {G}}{\biggr ]}{\biggr ]}\\&=\mathbb {E} {\biggl [}{\frac {|X|}{U}}1_{G}\cdot {\frac {|Y|}{V}}1_{G}{\biggr ]}\\&\leq {\biggl (}\mathbb {E} {\biggl [}{\frac {|X|^{p}}{U^{p}}}1_{G}{\biggr ]}{\biggr )}^{\frac {1}{p}}{\biggl (}\mathbb {E} {\biggl [}{\frac {|Y|^{q}}{V^{q}}}1_{G}{\biggr ]}{\biggr )}^{\frac {1}{q}}\\&={\biggl (}\mathbb {E} {\biggl [}\underbrace {\frac {\mathbb {E} {\bigl [}|X|^{p}{\big |}\,{\mathcal {G}}{\bigr ]}}{U^{p}}} _{=\,1{\text{ a.s. on }}G}1_{G}{\biggr ]}{\biggr )}^{\frac {1}{p}}{\biggl (}\mathbb {E} {\biggl [}\underbrace {\frac {\mathbb {E} {\bigl [}|Y|^{q}{\big |}\,{\mathcal {G}}{\bigr ]}}{V^{p}}} _{=\,1{\text{ a.s. on }}G}1_{G}{\biggr ]}{\biggr )}^{\frac {1}{q}}\\&=\mathbb {E} {\bigl [}1_{G}{\bigr ]}.\end{aligned}}}](./_assets_/82ea3e2364949d7450d60a5bb32972aadc0db999.svg)
 
Hölder's inequality for increasing seminorms
Let S be a set and let 
 be the space of all complex-valued functions on S. Let N be an increasing seminorm on 
 meaning that, for all real-valued functions 
 we have the following implication (the seminorm is also allowed to attain the value ∞):

Then:

where the numbers 
 and 
 are Hölder conjugates.[6]
Remark: If (S, Σ, μ) is a measure space and 
 is the upper Lebesgue integral of 
 then the restriction of N to all Σ-measurable functions gives the usual version of Hölder's inequality.
Distances based on Hölder inequality
Hölder inequality can be used to define statistical dissimilarity measures[7] between probability distributions. Those Hölder divergences are projective: They do not depend on the normalization factor of densities.
See also
Citations
- ^ Roman 2008, p. 303 §12
 
- ^ Maligranda, Lech (1998), "Why Hölder's inequality should be called Rogers' inequality", Mathematical Inequalities & Applications, 1 (1): 69–83, doi:10.7153/mia-01-05, MR 1492911
 
- ^ Guessab, A.; Schmeisser, G. (2013), "Necessary and sufficient conditions for the validity of Jensen's inequality", Archiv der Mathematik, 100 (6): 561–570, doi:10.1007/s00013-013-0522-3, MR 3069109, S2CID 253600514, 
under the additional assumption that 
 exists, this inequality was already obtained by Hölder in 1889
 
- ^ Wojtaszczyk, P. (1991). Banach Spaces for Analysts. Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press. ISBN 978-0-521-56675-9.
 
- ^ Beckenbach, E. F. (1980). General inequalities 2. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d'Analyse Numérique. Vol. 47. Birkhäuser Basel. pp. 145–150. doi:10.1007/978-3-0348-6324-7. ISBN 978-3-7643-1056-1.
 
- ^ For a proof see (Trèves 1967, Lemma 20.1, pp. 205–206).
 
- ^ Nielsen, Frank; Sun, Ke; Marchand-Maillet, Stephane (2017). "On Hölder projective divergences". Entropy. 3 (19): 122. arXiv:1701.03916. Bibcode:2017Entrp..19..122N. doi:10.3390/e19030122.
 
 
References
- Grinshpan, A. Z. (2010), "Weighted inequalities and negative binomials", Advances in Applied Mathematics, 45 (4): 564–606, doi:10.1016/j.aam.2010.04.004
 
- Hardy, G. H.; Littlewood, J. E.; Pólya, G. (1934), Inequalities, Cambridge University Press, pp. XII+314, ISBN 0-521-35880-9, JFM 60.0169.01, Zbl 0010.10703 .
 
- Hölder, O. (1889), "Ueber einen Mittelwertsatz", Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen, Band (in German), 1889 (2): 38–47, JFM 21.0260.07. Available at Digi Zeitschriften.
 
- Kuptsov, L. P. (2001) [1994], "Hölder inequality", Encyclopedia of Mathematics, EMS Press.
 
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
 
- Rogers, L. J. (February 1888), "An extension of a certain theorem in inequalities", Messenger of Mathematics, New Series, XVII (10): 145–150, JFM 20.0254.02, archived from the original on August 21, 2007.
 
- Roman, Stephen (2008), Advanced Linear Algebra, Graduate Texts in Mathematics (Third ed.), Springer, ISBN 978-0-387-72828-5
 
- Trèves, François (1967), Topological Vector Spaces, Distributions and Kernels, Pure and Applied Mathematics. A Series of Monographs and Textbooks, vol. 25, New York, London: Academic Press, MR 0225131, Zbl 0171.10402.
 
- Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
 
External links
- Chen, Evan (2014), A Brief Introduction to Olympiad Inequalities (PDF).
 
- Kuttler, Kenneth (2007), An Introduction to Linear Algebra (PDF), Online e-book in PDF format, Brigham Young University, archived from the original (PDF) on 2008-08-07, retrieved 2008-03-26.
 
- Lohwater, Arthur (1982), Introduction to Inequalities (PDF).
 
- Archived at Ghostarchive and the Wayback Machine: Tisdell, Chris (2012), Holder's Inequality, YouTube.
 
 | 
|---|
| Basic concepts |  | 
|---|
| Sets |  | 
|---|
| Types of measures |  | 
|---|
| Particular measures |  | 
|---|
| Maps |  | 
|---|
| Main results |  | 
|---|
| Other results |  | 
|---|
| Applications & related |  | 
|---|
 
 | 
|---|
| Spaces |  | 
|---|
| Theorems |  | 
|---|
| Operators |  | 
|---|
| Algebras |  | 
|---|
| Open problems |  | 
|---|
| Applications |  | 
|---|
| Advanced topics |  | 
|---|
  Category 
  |