Stochastic Gronwall inequality is a generalization of Gronwall's inequality and has been used for proving the well-posedness of path-dependent stochastic differential equations with local monotonicity and coercivity assumption with respect to supremum norm.[1][2]
Statement
Let  be a non-negative right-continuous
 be a non-negative right-continuous  -adapted process. Assume that
-adapted process. Assume that  is a deterministic non-decreasing càdlàg function with
 is a deterministic non-decreasing càdlàg function with  and let
 and let  be a non-decreasing and càdlàg adapted process starting from
	be a non-decreasing and càdlàg adapted process starting from  . Further, let
. Further, let  be  an
 be  an  - local martingale with
- local martingale with  and càdlàg paths.
 and càdlàg paths.
Assume that for all  ,
,
 where
where ![{\displaystyle X^{*}(u):=\sup _{r\in [0,u]}X(r)}](./_assets_/b169bdd672daeb668737d46e7a9589e7f18e7f9c.svg) .
.
and define  . Then the following estimates hold for
. Then the following estimates hold for  and
 and  :[1][2]
:[1][2]
- If  and and is predictable, then is predictable, then![{\displaystyle \mathbb {E} \left[\left(X^{*}(T)\right)^{p}{\Big \vert }{\mathcal {F}}_{0}\right]\leq {\frac {c_{p}}{p}}\mathbb {E} \left[(H(T))^{p}{\big \vert }{\mathcal {F}}_{0}\right]\exp \left\lbrace c_{p}^{1/p}A(T)\right\rbrace }](./_assets_/3806b011a7b71979f583910989c6838e8e425127.svg) ; ;
- If  and and has no negative jumps, then has no negative jumps, then![{\displaystyle \mathbb {E} \left[\left(X^{*}(T)\right)^{p}{\Big \vert }{\mathcal {F}}_{0}\right]\leq {\frac {c_{p}+1}{p}}\mathbb {E} \left[(H(T))^{p}{\big \vert }{\mathcal {F}}_{0}\right]\exp \left\lbrace (c_{p}+1)^{1/p}A(T)\right\rbrace }](./_assets_/799e69cff46d16787a84f16dc4f08fa493f2ab49.svg) ; ;
- If  then then![{\displaystyle \displaystyle {\mathbb {E} \left[\left(X^{*}(T)\right)^{p}{\Big \vert }{\mathcal {F}}_{0}\right]\leq {\frac {c_{p}}{p}}\left(\mathbb {E} \left[H(T){\big \vert }{\mathcal {F}}_{0}\right]\right)^{p}\exp \left\lbrace c_{p}^{1/p}A(T)\right\rbrace }}](./_assets_/6bc5d956bfe6a71a116989ae7eae4bce73c97a0c.svg) ; ;
Proof
It has been proven by Lenglart's inequality.[1]
References