List of organic reactions
Well-known reactions and reagents in organic chemistry include
0-9
A
- Acetalisation
 - Acetoacetic ester condensation
 - Achmatowicz reaction
 - Acylation
 - Acyloin condensation
 - Adams' catalyst
 - Adams decarboxylation
 - Adkins catalyst
 - Adkins–Peterson reaction
 - Akabori amino acid reaction
 - Alcohol oxidation
 - Alder ene reaction[1][2][3][4]
 - Alder–Stein rules
 - Aldol addition
 - Aldol condensation
 - Algar–Flynn–Oyamada reaction
 - Alkylimino-de-oxo-bisubstitution
 - Alkyne trimerisation
 - Alkyne zipper reaction
 - Allan–Robinson reaction
 - Allylic rearrangement
 - Amadori rearrangement
 - Amine alkylation
 - Angeli–Rimini reaction
 - Andrussov oxidation
 - Appel reaction
 - Arbuzov reaction, Arbusow reaction
 - Arens–Van Dorp synthesis, Isler modification
 - Aromatic nitration
 - Arndt–Eistert synthesis
 - Aston–Greenburg rearrangement[5][6][7][8]
 - Auwers synthesis
 - Aza-Cope rearrangement[9][10][11]
 - Azo coupling
 
B
- Baeyer–Drewson indigo synthesis
 - Baeyer–Villiger oxidation, Baeyer–Villiger rearrangement[12]
 - Bakeland process (Bakelite)
 - Baker–Venkataraman rearrangement, Baker–Venkataraman transformation[13][14][15][16]
 - Baldwin's rules[17]
 - Bally–Scholl synthesis
 - Balz–Schiemann reaction[18]
 - Bamberger rearrangement
 - Bamberger triazine synthesis
 - Bamford–Stevens reaction
 - Barbier reaction
 - Barbier–Wieland degradation
 - Bardhan–Sengupta phenanthrene synthesis
 - Barfoed's test
 - Bargellini reaction
 - Bartoli indole synthesis, Bartoli reaction[19][20][21]
 - Barton decarboxylation
 - Barton reaction[22][23]
 - Barton–Kellogg reaction
 - Barton–McCombie reaction, Barton deoxygenation
 - Barton-Zard Synthesis
 - Barton vinyl iodine procedure
 - Baudisch reaction
 - Bayer test
 - Baylis–Hillman reaction
 - Bechamp reaction
 - Bechamp reduction
 - Beckmann fragmentation
 - Beckmann rearrangement
 - Bellus–Claisen rearrangement
 - Belousov–Zhabotinsky reaction
 - Benary reaction
 - Benedict's reagent
 - Benkeser reaction
 - Benzidine rearrangement
 - Benzilic acid rearrangement
 - Benzoin condensation
 - Bergman cyclization
 - Bergmann azlactone peptide synthesis
 - Bergmann degradation
 - Bergmann–Zervas carbobenzoxy method
 - Bernthsen acridine synthesis
 - Bestmann's reagent
 - Betti reaction
 - Biginelli pyrimidine synthesis
 - Biginelli reaction
 - Bingel reaction
 - Birch reduction
 - Bischler–Möhlau indole synthesis
 - Bischler–Napieralski reaction
 - Biuret test
 - Blaise ketone synthesis
 - Blaise reaction
 - Blanc reaction
 - Blanc chloromethylation
 - Blum–Ittah aziridine synthesis
 - Bodroux reaction
 - Bodroux–Chichibabin aldehyde synthesis
 - Bogert–Cook synthesis
 - Bohlmann-Rahtz pyridine synthesis
 - Bohn–Schmidt reaction
 - Boord olefin synthesis
 - Borodin reaction
 - Borsche–Drechsel cyclization
 - Bosch–Meiser urea process
 - Bosch reaction
 - Bouveault aldehyde synthesis
 - Bouveault–Blanc reduction
 - Boyland–Sims oxidation
 - Boyer Reaction
 - Bredt's rule
 - Brook rearrangement
 - Brown hydroboration
 - Bucherer carbazole synthesis
 - Bucherer reaction
 - Bucherer–Bergs reaction
 - Buchner ring enlargement
 - Büchner–Curtius–Schlotterbeck reaction
 - Buchwald–Hartwig amination
 - Bunnett reaction
 - Burgess reagent
 
C
- Cadiot–Chodkiewicz coupling
 - Cadogan-Sundberg indole synthesis
 - Camps quinoline synthesis
 - Cannizzaro reaction
 - Carbohydrate acetalisation
 - Carbonyl reduction
 - Carbonylation
 - Carbylamine reaction
 - Carroll reaction
 - Castro–Stephens coupling
 - Catalytic reforming
 - Catellani Reaction
 - CBS reduction
 - Chan–Lam coupling
 - Chapman rearrangement
 - Cheletropic reaction
 - Chichibabin pyridine synthesis
 - Chichibabin reaction
 - Chiral pool synthesis
 - Chugaev elimination
 - Ciamician–Dennstedt rearrangement
 - Claisen condensation
 - Claisen rearrangement
 - Claisen–Schmidt condensation
 - Clemmensen reduction
 - Collins reagent
 - Combes quinoline synthesis
 - Conia reaction
 - Conrad–Limpach synthesis
 - Cook–Heilbron thiazole synthesis
 - Cope elimination
 - Cope rearrangement[24]
 - Corey reagent
 - Corey–Bakshi–Shibata reduction
 - Corey–Fuchs reaction
 - Corey–Gilman–Ganem oxidation
 - Corey–Kim oxidation
 - Corey-Nicolaou macrolactonization
 - Corey–Posner, Whitesides–House reaction
 - Corey-Seebach reaction
 - Corey–Winter olefin synthesis
 - Corey–Winter reaction
 - Cornforth rearrangement
 - Coupling reaction
 - Crabbé reaction
 - Craig method
 - Cram's rule of asymmetric induction
 - Creighton process
 - Criegee reaction
 - Criegee rearrangement
 - Cross metathesis
 - Crum Brown–Gibson rule
 - Curtius degradation
 - Curtius rearrangement, Curtius reaction
 - Cyanohydrin reaction
 
D
- Dakin reaction (aka Dakin oxidation)
 - Dakin–West reaction
 - Danheiser annulation
 - Danheiser benzannulation
 - Darapsky degradation
 - Darzens condensation, Darzens–Claisen reaction, Glycidic ester condensation
 - Darzens halogenation
 - Darzens synthesis of unsaturated ketones
 - Darzens tetralin synthesis
 - Davis' reagent, Davis oxidation
 - Davis–Beirut reaction
 - De Kimpe aziridine synthesis
 - Dehydration reaction
 - Dehydrogenation
 - Delépine reaction
 - DeMayo reaction
 - Demjanov rearrangement
 - Demjanow desamination
 - Dess–Martin oxidation
 - Diazoalkane 1,3-dipolar cycloaddition
 - Diazotisation
 - DIBAL-H selective reduction
 - Dieckmann condensation
 - Dieckmann reaction
 - Diels–Alder reaction
 - Diels–Reese reaction
 - Dienol–benzene rearrangement
 - Dienone–phenol rearrangement
 - Dimroth rearrangement
 - Di-π-methane rearrangement
 - Directed ortho metalation
 - Doebner modification
 - Doebner reaction
 - Doebner–Miller reaction, Beyer method for quinolines
 - Doering–LaFlamme carbon chain extension
 - Dötz reaction
 - Dowd–Beckwith ring expansion reaction
 - Duff reaction
 - Dutt–Wormall reaction
 - Dyotropic reaction
 
E
- E1cB elimination reaction
 - Eder reaction
 - Edman degradation
 - Eglinton reaction
 - Ehrlich–Sachs reaction
 - Einhorn variant
 - Einhorn–Brunner reaction
 - Elbs persulfate oxidation
 - Elbs reaction
 - Electrochemical fluorination
 - Electrocyclic reaction
 - Electrophilic halogenation
 - Electrophilic amination
 - Elimination reaction
 - Emde degradation
 - Emmert reaction
 - Enders SAMP/RAMP hydrazone-alkylation reaction
 - Ene reaction
 - Enyne metathesis
 - Epoxidation
 - Erlenmeyer synthesis, Azlactone synthesis
 - Erlenmeyer–Plöchl azlactone and amino-acid synthesis
 - Eschenmoser fragmentation
 - Eschenmoser sulfide contraction
 - Eschweiler–Clarke reaction
 - Ester pyrolysis
 - Ether cleavage
 - Étard reaction
 - Evans aldol
 - Evans–Saksena reduction
 - Evans–Tishchenko reaction
 
F
- Favorskii reaction
 - Favorskii rearrangement
 - Favorskii–Babayan synthesis
 - Fehling test
 - Feist–Benary synthesis
 - Fenton reaction
 - Ferrario reaction
 - Ferrier carbocyclization
 - Ferrier rearrangement
 - Fétizon oxidation
 - Fiesselmann thiophene synthesis
 - Finkelstein reaction[25]
 - Fischer indole synthesis
 - Fischer oxazole synthesis
 - Fischer peptide synthesis
 - Fischer phenylhydrazine and oxazone reaction
 - Fischer glycosidation
 - Fischer–Hepp rearrangement
 - Fischer–Speier esterification
 - Fischer Tropsch synthesis
 - Fleming–Tamao oxidation
 - Flood reaction
 - Folin–Ciocalteu reagent
 - Formox process
 - Forster reaction
 - Forster–Decker method
 - Fowler process
 - Franchimont reaction
 - Frankland synthesis
 - Frankland–Duppa reaction
 - Fráter–Seebach alkylation
 - Free radical halogenation
 - Freund reaction
 - Friedel–Crafts acylation
 - Friedel–Crafts alkylation
 - Friedländer synthesis
 - Fries rearrangement
 - Fritsch–Buttenberg–Wiechell rearrangement
 - Fujimoto–Belleau reaction
 - Fujiwara–Moritani reaction
 - Fukuyama coupling
 - Fukuyama indole synthesis
 - Fukuyama reduction
 
G
- Gabriel ethylenimine method
 - Gabriel synthesis
 - Gabriel–Colman rearrangement, Gabriel isoquinoline synthesis
 - Gallagher–Hollander degradation
 - Gassman indole synthesis
 - Gastaldi synthesis
 - Gattermann aldehyde synthesis
 - Gattermann Koch reaction
 - Gattermann reaction
 - Geminal halide hydrolysis
 - Gewald reaction
 - Gibbs phthalic anhydride process
 - Gilman reagent
 - Glaser coupling
 - Glycol cleavage
 - Goldberg reaction
 - Gomberg–Bachmann reaction
 - Gomberg–Bachmann–Hey reaction
 - Gomberg radical reaction
 - Gould–Jacobs reaction
 - Graebe–Ullmann synthesis
 - Grignard degradation
 - Griesbaum coozonolysis
 - Grignard reaction
 - Grob fragmentation
 - Grubbs' catalyst in Olefin metathesis
 - Grundmann aldehyde synthesis
 - Gryszkiewicz–Trochimowski and McCombie method
 - Guareschi–Thorpe condensation
 - Guerbet reaction
 - Gutknecht pyrazine synthesis
 
H
- Hajos–Parrish–Eder–Sauer–Wiechert reaction
 - Haller–Bauer reaction
 - Haloform reaction
 - Halogen addition reaction
 - Halohydrin formation reaction
 - Hammick reaction
 - Hammond principle or Hammond postulate
 - Hantzsch pyrrole synthesis
 - Hantzsch dihydropyridine synthesis, Hantzsch pyridine synthesis
 - Hantzsch pyridine synthesis, Gattermann–Skita synthesis, Guareschi–Thorpe condensation, Knoevenagel–Fries modification
 - Hantzsch–Collidin synthesis
 - Harries ozonolysis
 - Haworth methylation
 - Haworth Synthesis
 - Hay coupling
 - Hayashi rearrangement
 - Heck reaction
 - Hegedus indole synthesis
 - Helferich method
 - Hell–Volhard–Zelinsky halogenation
 - Hemetsberger indole synthesis
 - Hemetsberger–Knittel synthesis
 - Henkel reaction, Raecke process, Henkel process
 - Henry reaction, Kamlet reaction
 - Herz reaction, Herz compounds
 - Herzig–Meyer alkimide group determination
 - Heumann indigo synthesis
 - Hiyama coupling
 - Hydration reaction
 - Hydroamination
 - Hydrodesulfurization
 - Hydrogenolysis
 - Hydrosilylation
 - Hinsberg indole synthesis
 - Hinsberg oxindole synthesis
 - Hinsberg reaction
 - Hinsberg separation
 - Hinsberg sulfone synthesis
 - Hirao coupling
 - Hoch–Campbell ethylenimine synthesis
 - Hock rearrangement
 - Hofmann bromamide reaction
 - Hofmann degradation, Exhaustive methylation
 - Hofmann elimination
 - Hofmann Isonitrile synthesis, Carbylamine reaction
 - Hofmann product
 - Hofmann rearrangement
 - Hofmann–Löffler reaction, Löffler–Freytag reaction, Hofmann–Löffler–Freytag reaction
 - Hofmann–Martius rearrangement
 - Hofmann's rule
 - Hofmann–Sand reaction
 - Homo rearrangement of steroids
 - Hooker reaction
 - Horner–Wadsworth–Emmons reaction
 - Hoesch reaction
 - Hosomi–Sakurai reaction
 - Houben–Fischer synthesis
 - Hudlicky fluorination
 - Huisgen cycloaddition
 - Hunsdiecker reaction, Hunsdiecker–Borodin reaction
 - Hurd-Mori 1,2,3-thiadiazole synthesis
 - Hurtley reaction
 - Hydroboration
 - Hydrocarbon cracking
 - Hydrohalogenation
 
I
- Indium mediated allylation
 - Ing–Manske procedure
 - Ipso substitution
 - Ireland–Claisen rearrangement
 - Isay reaction
 - Ishikawa reagent
 - trans-cis isomerism
 - Ivanov reagent, Ivanov reaction
 
J
- Jacobsen epoxidation
 - Jacobsen rearrangement
 - Janovsky reaction
 - Japp–Klingemann reaction
 - Japp–Maitland condensation
 - Jocic reaction
 - Johnson–Claisen rearrangement
 - Johnson–Corey–Chaykovsky reaction[26][27]
 - Jones oxidation[28][29]
 - Jordan–Ullmann–Goldberg synthesis
 - Julia olefination, Julia–Lythgoe olefination[30]
 
K
- Kabachnik–Fields reaction
 - Kharasch–Sosnovsky reaction
 - Keck asymmetric allylation
 - Ketimine Mannich reaction
 - Ketone halogenation
 - Kiliani–Fischer synthesis
 - Kindler reaction
 - Kishner cyclopropane synthesis
 - Knoevenagel condensation
 - Knorr pyrazole synthesis
 - Knorr pyrrole synthesis
 - Knorr quinoline synthesis
 - Koch–Haaf reaction
 - Kochi reaction
 - Koenigs–Knorr reaction
 - Kolbe electrolysis
 - Kolbe nitrile synthesis
 - Kolbe–Schmitt reaction
 - Kornblum oxidation
 - Kornblum–DeLaMare rearrangement
 - Kostanecki acylation
 - Kowalski ester homologation
 - Krapcho decarboxylation
 - Krische allylation
 - Kröhnke aldehyde synthesis
 - Kröhnke oxidation
 - Kröhnke pyridine synthesis
 - Kucherov reaction
 - Kuhn–Winterstein reaction
 - Kulinkovich reaction
 - Kumada coupling
 
L
- Larock indole synthesis
 - Lawesson's reagent
 - Lebedev process
 - Lehmstedt–Tanasescu reaction
 - Leimgruber–Batcho indole synthesis
 - Letts nitrile synthesis
 - Leuckart reaction
 - Leuckart thiophenol reaction
 - Leuckart–Wallach reaction
 - Leuckart amide synthesis
 - Levinstein process
 - Ley oxidation
 - Lieben iodoform reaction, Haloform reaction
 - Liebeskind–Srogl coupling
 - Liebig melamine synthesis
 - Lindlar catalyst
 - Lobry de Bruyn–Van Ekenstein transformation
 - Lombardo methylenation
 - Lossen rearrangement
 - Lucas' reagent
 - Luche reduction
 
M
- Maillard reaction
 - Madelung synthesis
 - Malaprade reaction, Periodic acid oxidation
 - Malonic ester synthesis
 - Mannich reaction
 - Markó–Lam deoxygenation
 - Markovnikov's rule, Markownikoff rule, Markownikow rule
 - Marschalk reaction
 - Martinet dioxindole synthesis
 - McDougall monoprotection
 - McFadyen–Stevens reaction
 - McMurry reaction
 - Meerwein arylation
 - Meerwein–Ponndorf–Verley reduction
 - Meisenheimer rearrangement
 - Meissenheimer complex
 - Menshutkin reaction
 - Metal-ion-catalyzed σ-bond rearrangement
 - Mesylation
 - Merckwald asymmetric synthesis
 - Metallo-ene reaction
 - Methylation
 - Meyer and Hartmann reaction
 - Meyer reaction
 - Meyer synthesis
 - Meyer–Schuster rearrangement
 - Michael addition
 - Michael addition, Michael system
 - Michael condensation
 - Michaelis–Arbuzov reaction
 - Midland Alpine borane reduction
 - Mignonac reaction
 - Milas hydroxylation of olefins
 - Minisci reaction
 - Mislow–Evans rearrangement
 - Mitsunobu reaction
 - Miyaura borylation
 - Modified Wittig-Claisen tandem reaction
 - Molisch's test
 - Mozingo reduction
 - Mukaiyama aldol addition (Mukaiyama reaction)
 - Mukaiyama hydration
 - Myers' asymmetric alkylation
 
N
- Nametkin rearrangement
 - Narasaka–Prasad reduction
 - Nazarov cyclization reaction
 - Neber rearrangement
 - Nef reaction
 - Negishi coupling
 - Negishi zipper reaction
 - Nenitzescu indole synthesis
 - Nenitzescu reductive acylation
 - Newman–Kwart rearrangement
 - Nicholas reaction
 - Niementowski quinazoline synthesis
 - Niementowski quinoline synthesis
 - Nierenstein reaction
 - NIH shift
 - Ninhydrin test
 - Nitroaldol reaction
 - Nitrone-olefin 3+2 cycloaddition
 - Normant reagents
 - Noyori asymmetric hydrogenation
 - Nozaki–Hiyama–Kishi reaction
 - Nucleophilic acyl substitution
 
O
- Ohira–Bestmann reaction
 - Olah reagent
 - Olefin metathesis
 - Oppenauer oxidation
 - Orton rearrangement
 - Ostromyslenskii reaction, Ostromisslenskii reaction
 - Overman rearrangement
 - Oxidative decarboxylation
 - Oxo synthesis
 - Oxy-Cope rearrangement
 - Oxymercuration
 - Oxidation of alcohols to carbonyl compounds
 - Ozonolysis
 
P
- Paal–Knorr pyrrole synthesis
 - Paal–Knorr synthesis
 - Paneth technique
 - Passerini reaction
 - Paternò–Büchi reaction
 - Pauson–Khand reaction
 - Payne rearrangement
 - Pechmann condensation
 - Pechmann pyrazole synthesis
 - Pellizzari reaction
 - Pelouze synthesis
 - Peptide synthesis
 - Perkin alicyclic synthesis
 - Perkin reaction
 - Perkin rearrangement
 - Perkow reaction
 - Petasis reaction
 - Petasis reagent
 - Peterson olefination
 - Peterson reaction
 - Petrenko-Kritschenko piperidone synthesis
 - Pfau–Plattner azulene synthesis
 - Pfitzinger reaction
 - Pfitzner–Moffatt oxidation
 - Phosphonium coupling
 - Photosynthesis
 - Piancatelli rearrangement
 - Pictet–Gams isoquinoline synthesis
 - Pictet–Hubert reaction
 - Pictet–Spengler tetrahydroisoquinoline synthesis
 - Pictet–Spengler reaction
 - Piloty–Robinson pyrrole synthesis
 - Pinacol coupling reaction
 - Pinacol rearrangement
 - Pinner amidine synthesis
 - Pinner method for ortho esters
 - Pinner reaction
 - Pinner triazine synthesis
 - Pinnick oxidation
 - Piria reaction
 - Polonovski reaction
 - Pomeranz–Fritsch reaction
 - Ponzio reaction
 - Prato reaction
 - Prelog strain
 - Prevost reaction
 - Prileschajew reaction
 - Prilezhaev reaction
 - Prins reaction
 - Prinzbach synthesis
 - Protecting group
 - Pschorr reaction
 - Pummerer rearrangement
 - Purdie methylation, Irvine–Purdie methylation
 - PUREX
 
Q
R
- Ramberg–Bäcklund reaction
 - Raney nickel
 - Rap–Stoermer condensation
 - Raschig phenol process
 - Rauhut–Currier reaction
 - Racemization
 - Reductive amination
 - Reductive dehalogenation of halo ketones
 - Reed reaction
 - Reformatskii reaction, Reformatsky reaction[31]
 - Reilly–Hickinbottom rearrangement
 - Reimer–Tiemann reaction
 - Reissert indole synthesis
 - Reissert reaction, Reissert compound
 - Reppe synthesis
 - Retropinacol rearrangement
 - Rieche formylation
 - Riemschneider thiocarbamate synthesis
 - Riley oxidations
 - Ring closing metathesis
 - Ring opening metathesis
 - Ritter reaction[32][33]
 - Robinson annulation
 - Robinson–Gabriel synthesis
 - Robinson Schopf reaction
 - Rosenmund reaction
 - Rosenmund reduction
 - Rosenmund–von Braun synthesis
 - Roskamp reaction
 - Rothemund reaction
 - Rupe rearrangement
 - Rubottom oxidation
 - Ruff–Fenton degradation
 - Ruzicka large-ring synthesis
 
S
- Saegusa–Ito oxidation
 - Sakurai reaction
 - Salol reaction
 - Sandheimer
 - Sandmeyer diphenylurea isatin synthesis
 - Sandmeyer isonitrosoacetanilide isatin synthesis
 - Sandmeyer reaction
 - Sanger reagent
 - Saponification
 - Sarett oxidation
 - Schiemann reaction[18]
 - Schiff reaction
 - Schiff test
 - Schlenk equilibrium
 - Schlosser modification
 - Schlosser variant
 - Schmidlin ketene synthesis
 - Schmidt degradation
 - Schmidt reaction
 - Scholl reaction
 - Schorigin Shorygin reaction, Shorygin reaction, Wanklyn reaction
 - Schotten–Baumann reaction
 - Seliwanoff's test
 - Semidine rearrangement
 - Semmler–Wolff reaction
 - Seyferth–Gilbert homologation
 - Shapiro reaction
 - Sharpless asymmetric dihydroxylation
 - Sharpless epoxidation[34]
 - Sharpless oxyamination or aminohydroxylation
 - Shenck ene reaction
 - Shi epoxidation
 - Shiina esterification
 - Shiina macrolactonization or Shiina lactonization
 - Sigmatropic reaction
 - Simmons–Smith reaction
 - Simonini reaction
 - Simonis chromone cyclization
 - Simons process
 - Skraup chinolin synthesis
 - Skraup reaction
 - Smiles rearrangement
 - SNAr nucleophilic aromatic substitution
 - SN1
 - SN2
 - SNi
 - Solvolysis
 - Sommelet reaction
 - Sonn–Müller method
 - Sonogashira coupling
 - Sørensen formol titration
 - Staedel–Rugheimer pyrazine synthesis
 - Stahl oxidation
 - Staudinger reaction
 - Staudinger synthesis
 - Steglich esterification
 - Stephen aldehyde synthesis
 - Stephens-Castro coupling
 - Stetter reaction
 - Stevens rearrangement
 - Stieglitz rearrangement
 - Stille coupling
 - Stobbe condensation
 - Stollé synthesis
 - Stork acylation
 - Stork enamine alkylation
 - Strecker amino acid synthesis
 - Strecker degradation
 - Strecker sulfite alkylation
 - Strecker synthesis
 - Stereocontrolled 1,2-addition to carbonyl groups
 - Suzuki coupling
 - Swain equation
 - Swarts reaction
 - Swern oxidation
 
T
- Tamao oxidation
 - Tafel rearrangement
 - Takai olefination
 - Tebbe olefination
 - ter Meer reaction
 - Thiele reaction
 - Thiol-yne reaction
 - Thorpe reaction
 - Tiemann rearrangement
 - Tiffeneau ring enlargement reaction
 - Tiffeneau–Demjanov rearrangement
 - Tischtschenko reaction
 - Tishchenko reaction, Tishchenko–Claisen reaction
 - Tollens reagent
 - Transfer hydrogenation
 - Trapp mixture
 - Transesterification
 - Traube purine synthesis
 - Truce–Smiles rearrangement
 - Tscherniac–Einhorn reaction
 - Tschitschibabin reaction
 - Tschugajeff reaction
 - Tsuji–Trost reaction
 - Tsuji–Wilkinson decarbonylation reaction
 - Twitchell process
 - Tyrer sulfonation process
 
U
- Ugi reaction
 - Ullmann reaction
 - Upjohn dihydroxylation
 - Urech cyanohydrin method
 - Urech hydantoin synthesis
 
V
- Van Leusen reaction
 - Van Slyke determination
 - Varrentrapp reaction
 - Vilsmeier reaction
 - Vilsmeier–Haack reaction
 - Voight amination
 - Volhard–Erdmann cyclization
 - von Braun amide degradation
 - von Braun reaction
 - von Richter cinnoline synthesis
 - von Richter reaction
 
W
- Wacker–Tsuji oxidation
 - Wagner-Jauregg reaction
 - Wagner–Meerwein rearrangement
 - Waits–Scheffer epoxidation
 - Walden inversion
 - Wallach rearrangement
 - Weerman degradation
 - Weinreb ketone synthesis
 - Wenker ring closure
 - Wenker synthesis
 - Wessely–Moser rearrangement
 - Westphalen–Lettré rearrangement
 - Wharton reaction
 - Whiting reaction
 - Wichterle reaction
 - Widman–Stoermer synthesis
 - Wilkinson catalyst
 - Willgerodt rearrangement
 - Willgerodt–Kindler reaction
 - Williamson ether synthesis
 - Winstein reaction
 - Wittig reaction
 - Wittig rearrangement:
 - Wittig–Horner reaction
 - Wohl degradation
 - Wohl–Aue reaction
 - Wohler synthesis
 - Wohl–Ziegler reaction
 - Wolffenstein–Böters reaction
 - Wolff rearrangement
 - Wolff–Kishner reduction
 - Woodward cis-hydroxylation
 - Woodward–Hoffmann rule
 - Wulff–Dötz reaction
 - Wurtz coupling, Wurtz reaction
 - Wurtz–Fittig reaction
 
Y
Z
- Zaitsev's rule
 - Zeisel determination
 - Zerevitinov determination, Zerewitinoff determination
 - Ziegler condensation
 - Ziegler method
 - Zimmermann reaction
 - Zincke disulfide cleavage
 - Zincke nitration
 - Zincke reaction
 - Zincke–Suhl reaction
 - Zinin reduction
 
See also
Wikimedia Commons has media related to Organic reactions.
- Stigler's law of eponymy
 - Name reaction
 - List of organic compounds
 - List of inorganic compounds
 - Named inorganic compounds
 - List of biomolecules
 - List of minerals
 
References
- ^ Treibs, Wilhelm; Schmidt, Harry (1927). "Zur katalytischen Dehydrierung hydro-aromatischer Verbindungen" [Catalytic dehydrogenation of hydroaromatic compounds]. Berichte der Deutschen Chemischen Gesellschaft (in German). 60 (10): 2335–2341. doi:10.1002/cber.187600901134.
 - ^ Alder, Kurt; Nobel, Theo (1943). "Über die Anlagerung von Azodicarbonsäure-ester an Aldehyde" [Substituting additions. II. Addition of azodicarboxylic esters to aldehydes.]. Berichte der Deutschen Chemischen Gesellschaft (in German). 76 (1): 54–57. doi:10.1002/cber.19430760106.
 - ^ Alder, Kurt; Pascher, Franz; Schmitz, Andreas (1943). "Über die Anlagerung von Maleinsäure-anhydrid und Azodicarbonsäure-ester an einfach ungesättigte Koh an einfach ungesättigte Kohlenwasserstoffe. Zur Kenntnis von Substitutionsvorgängen in der Allyl-Stellung" [Substituting additions. I. Addition of maleic anhydride and azodicarboxylic esters to singly unsaturated hydrocarbons. Substitution processes in the allyl position]. Berichte der Deutschen Chemischen Gesellschaft. 76 (1): 27–53. doi:10.1002/cber.19430760105.
 - ^ Alder, Kurt; Schmidt, Carl-Heinz (1943). "Über die Kondensation des Furans und seiner Homologen mit α,β-ungesättigten Ketonen und Aldehyden†Aufbau von Di-, Tri- und Tetraketonen der Fettreihe" [Substituting additions. III. Condensation of furan and its homologs with α,β-unsaturated ketones and aldehydes. Synthesis of di-, tri-and tetraketones of the aliphatic series.]. Berichte der Deutschen Chemischen Gesellschaft (in German). 76 (3): 183–205. doi:10.1002/cber.19430760302.
 - ^ Aston, J. G.; Greenburg, R. B. (1942). "alpha-Bromo Secondary Alkyl Ketones. I. Reaction with Sodium Alcoholates. A New Synthesis of Tertiary Acids by Rearrangement1,2". Journal of the American Chemical Society. 62 (10): 2590–2595. doi:10.1021/ja01867a003.
 - ^ Wang, Zerong (2010). Comprehensive Organic Name Reactions and Reagents. doi:10.1002/9780470638859.conrr026. ISBN 9780471704508.
 - ^ Sacks, Abraham A.; Aston, J. G. (1951). "α-Halo Ketones. V. The Preparation, Metathesis and Rearrangement of Certain α-Bromoketones". Journal of the American Chemical Society. 73 (8): 3902–3906. Bibcode:1951JAChS..73.3902S. doi:10.1021/ja01152a103.
 - ^ Wagner, R. B.; Moore, James A. (1950). "The Reaction of the Isomeric α-Bromomethyl Cyclohexyl Ketones with Sodium Methoxide". Journal of the American Chemical Society. 72 (7): 2884–2887. Bibcode:1950JAChS..72.2884W. doi:10.1021/ja01163a022.
 - ^ Oehlschlager, A. C.; Zalkow, L. H. (1965). "Bridged Ring Compounds. X.1,2 The Reaction of Benzenesulfonyl Azide with Norbornadiene, Dicyclopentadiene, and Bicyclo[2.2.2]-2-octene". The Journal of Organic Chemistry. 30 (12): 4205–4211. doi:10.1021/jo01023a051.
 - ^ Hill, Richard K.; Gilman, Norman W. (1967). "A nitrogen analog of the Claisen rearrangement". Tetrahedron Letters. 8 (15): 1421–1423. doi:10.1016/S0040-4039(00)71596-6.
 - ^ Lipkowitz, K. B.; Scarpone, S.; McCullough, D.; Barney, C. (1979). "The synthesis of N-substituted tetrahydropyridines using the hetero-cope rearrangement". Tetrahedron Letters. 20 (24): 2241–2244. doi:10.1016/S0040-4039(01)93686-X.
 - ^ Baeyer, Adolf; Villiger, Victor (1899). "Einwirkung des Caro'schen Reagens auf Ketone" [The effect of Caro's reagent on ketones]. Berichte der Deutschen Chemischen Gesellschaft (in German). 32 (3): 3625–3633. doi:10.1002/cber.189903203151.
 - ^ Baker, Wilson (1933). "Molecular rearrangement of some o-acyloxyacetophenones and the mechanism of the production of 3-acylchromones". Journal of the Chemical Society: 1381–1389. doi:10.1039/JR9330001381.
 - ^ Baker, Wilson (1934). "Attempts to synthesise 5,6-dihydroxyflavone (primetin)". Journal of the Chemical Society: 1953–1954. doi:10.1039/JR9340001953.
 - ^ Mahal, Harbhajan S.; Venkataraman, Krishnasami (1934). "Synthetical experiments in the chromone group. Part XIV. The action of sodamide on 1-acyloxy-2-acetonaphthones". Journal of the Chemical Society: 1767–1769. doi:10.1039/JR9340001767.
 - ^ Bhalla, Diwan C.; Mahal, Harbhajan S.; Venkataraman, Krishnasami (1935). "Synthetical experiments in the chromone group. Part XVII. Further observations on the action of sodamide on o-acyloxyacetophenones". Journal of the Chemical Society: 868–870. doi:10.1039/JR9350000868.
 - ^ Baldwin, Jack E. (1976). "Rules for ring closure". Journal of the Chemical Society, Chemical Communications (18): 734–736. doi:10.1039/C39760000734.
 - ^ a b Balz, Günther; Schiemann, Günther (1927). "Über aromatische Fluorverbindungen, I.: Ein neues Verfahren zu ihrer Darstellung" [Aromatic fluorine compounds. I. A new method for their preparation]. Berichte der Deutschen Chemischen Gesellschaft (in German). 60 (5): 1186–1190. doi:10.1002/cber.19270600539.
 - ^ Bartoli, Giuseppe; Leardini, Rino; Medici, Alessandro; Rosini, Goffredo (1978). "Reactions of nitroarenes with Grignard reagents. General method of synthesis of alkyl-nitroso-substituted bicyclic aromatic systems". Journal of the Chemical Society, Perkin Transactions 1 (7): 692–696. doi:10.1039/P19780000692.
 - ^ Bartoli, Giuseppe; Palmieri, Gianni; Bosco, Marcella; Dalpozzo, Renato (1989). "The reaction of vinyl grignard reagents with 2-substituted nitroarenes: A new approach to the synthesis of 7-substituted indoles". Tetrahedron Letters. 30 (16): 2129–2132. doi:10.1016/S0040-4039(01)93730-X.
 - ^ Bartoli, Giuseppe; Bosco, Marcella; Dalpozzo, Renato; Palmieri, Gianni; Marcantoni, Enrico (1991). "Reactivity of nitro- and nitroso-arenes with vinyl grignard reagents: synthesis of 2-(trimethylsilyl)indoles". Journal of the Chemical Society, Perkin Transactions 1 (11): 2757–2761. doi:10.1039/P19910002757.
 - ^ Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M. (1960). "A new photochemical reaction". Journal of the American Chemical Society. 82 (10): 2640–2641. Bibcode:1960JAChS..82.2640B. doi:10.1021/ja01495a061.
 - ^ Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M. (1961). "A new photochemical reaction". Journal of the American Chemical Society. 83 (19): 4076–4083. Bibcode:1961JAChS..83.4076B. doi:10.1021/ja01480a030.
 - ^ Cope, Arthur C.; Hardy, Elizabeth M. (1940). "The Introduction of Substituted Vinyl Groups. V. A Rearrangement Involving the Migration of an Allyl Group in a Three-Carbon System". Journal of the American Chemical Society. 62 (2): 441–444. Bibcode:1940JAChS..62..441C. doi:10.1021/ja01859a055.
 - ^ Finkelstein, Hans (1910). "Darstellung organischer Jodide aus den entsprechenden Bromiden und Chloriden" [Preparation of Organic Iodides from the Corresponding Bromides and Chlorides]. Berichte der Deutschen Chemischen Gesellschaft (in German). 43 (2): 1528–1532. doi:10.1002/cber.19100430257.
 - ^ Corey, E. J.; Chaykovsky, Michael (1962). "Dimethylsulfoxonium Methylide". Journal of the American Chemical Society. 84 (5): 867–868. Bibcode:1962JAChS..84..867C. doi:10.1021/ja00864a040.
 - ^ Corey, E. J.; Chaykovsky, Michael (1965). "Dimethyloxosulfonium Methylide ((CH3)2SOCH2) and Dimethylsulfonium Methylide ((CH3)2SCH2). Formation and Application to Organic Synthesis". Journal of the American Chemical Society. 87 (6): 1353–1364. Bibcode:1965JAChS..87.1353C. doi:10.1021/ja01084a034.
 - ^ Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, B. C. L. (1946). "Researches on acetylenic compounds. Part I. The preparation of acetylenic ketones by oxidation of acetylenic carbinols and glycols". Journal of the Chemical Society: 39–45. doi:10.1039/JR9460000039.
 - ^ Bowers, A.; Halsall, T. G.; Jones, E. R. H.; Lemin, A. J. (1953). "The chemistry of the triterpenes and related compounds. Part XVIII. Elucidation of the structure of polyporenic acid C". Journal of the Chemical Society: 2548–2560. doi:10.1039/JR9530002548.
 - ^ Julia, Marc; Paris, Jean-Marc (1973). "Syntheses a l'aide de sulfones v(+)- methode de synthese generale de doubles liaisons" [Syntheses with the help of sulfones. V. General method of synthesis of double bonds]. Tetrahedron Letters (in French). 14 (49): 4833–4836. doi:10.1016/S0040-4039(01)87348-2.
 - ^ Reformatsky, Sergius (1887). "Neue Synthese zweiatomiger einbasischer Säuren aus den Ketonen". Berichte der Deutschen Chemischen Gesellschaft. 20 (1): 1210–1211. doi:10.1002/cber.188702001268.
 - ^ Ritter, John J.; Kalish, Joseph (1948). "A New Reaction of Nitriles. II. Synthesis of t-Carbinamines". Journal of the American Chemical Society. 70 (12): 4048–4050. Bibcode:1948JAChS..70.4048R. doi:10.1021/ja01192a023. PMID 18105933.
 - ^ Ritter, John J.; Minieri, P. Paul (1948). "A New Reaction of Nitriles. I. Amides from Alkenes and Mononitriles". Journal of the American Chemical Society. 70 (12): 4045–4048. Bibcode:1948JAChS..70.4045R. doi:10.1021/ja01192a022. PMID 18105932.
 - ^ Katsuki, Tsutomu; Sharpless, K. Barry (1980). "The first practical method for asymmetric epoxidation". Journal of the American Chemical Society. 102 (18): 5974–5976. Bibcode:1980JAChS.102.5974K. doi:10.1021/ja00538a077.